

Navy Characterization of Covetic Aluminum

David R. Forrest, Sc.D., PE NSWCCD (301) 227-5033, david.r.forrest@navy.mil

31 January 2011

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an DMB control number.	ion of information. Send comment arters Services, Directorate for Info	s regarding this burden estimate ormation Operations and Reports	or any other aspect of the s, 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE 31 JAN 2011		2. REPORT TYPE		3. DATES COVE 00-00-2011	TRED 1 to 00-00-2011		
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER						
Navy Characterization of Covetic Aluminum				5b. GRANT NUMBER			
					5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER			
					5e. TASK NUMBER		
		5f. WORK UNIT NUMBER					
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Surface Warfare Center, Welding, Processing, and NDE, Code 611,9500 MacArthur Boulevard, West Bethesda, MD, 20817-5700					8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)			
		11. SPONSOR/MONITOR'S REPORT NUMBER(S)					
12. DISTRIBUTION/AVAII Approved for publ	ABILITY STATEMENT ic release; distributi	ion unlimited					
13. SUPPLEMENTARY NO	TES						
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	19	ALSI ONSIBLE I EKSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Summary

- > There is a new class of materials: Covetic
 - Third Millennium Metals, LLC; 12-yr development
 - Nanoscale carbon phase, 3-10 wt. %
 - Chemically bound to metal in a way we still need to understand; probably a new nano-effect
 - Increased thermal conductivity, Al and Cu
- NSWCCD has verified some of the claims
 - Increased strength for same work hardening
 - Increased electrical conductivity in Al
- Possible lightweight aluminum armor—more testing needed

SEM

- ➤ In copper, we see
 - Approx. 50 nm particle chains
 - Chemically bound to metal matrix
 - Remains intact upon remelting
- In aluminum, we also see nanoscale carbon
 - But due to beam alignment issues we do not have good images yet

Electronic State of Carbon--Muller, Cornell

Voids between grains are coated with sp² amorphous carbon.

6061 Chemical Analysis (wt. %)

Carbon via LECO combustion method gives only 0.300% carbon inclusions. The remaining 2.7% is <u>NOT DETECTED</u>.

	6061-0	H-49 Covetic	ASTM B211
С	0.003	0.300	0.05 max
Si	0.72	0.71	0.4 - 0.8
Fe	0.25	0.24	0.7 max
Cu	0.18	0.18	0.15 – 0.40
Mn	0.061	0.064	0.15 max
Mg	0.99	1.03	0.8 – 1.2
Cr	0.054	0.057	0.04 - 0.35
Zn	0.080	0.084	0.25 max
Ti	0.088	0.099	0.15 max
V	0.0072	0.0074	0.05 max

GDMS

Carbon via GDMS gives 0.22 wt%. However, measured level goes up over time during sputtering.

GDMS

"These are indeed very interesting samples. It is evident that both of these samples are sputtering fairly uniform[1]y under normal glow-discharge conditions. However, the texture of the bottom of the plasma craters is very different as compared to ordinary Al and/or Cu samples." --Karol Putyera, Evans Analytical

Differential Thermal Analysis

Melting temperature is increased: 663°C vs. 652°C (the liquidus temperature of AA6061).

Metallography (Naval Academy)

- - •Composite cross section of H49 covetic aluminum specimen from left to right side
 - •Specimen mounted and polished using 3 µm diamond grit
 - 50X magnification.
 - Carbon inclusions present in greater fractions around perimeter of stock material, with larger "spots" towards outer edges.

- Typical cross section of comparison 6061
- •50X magnification
- •Almost no inclusions noted

Electron Backscatter Diffraction (Wolk): Covetic has much finer grain size

Density of 6061 Naval Academy, CDR Lloyd Brown

As-extruded material

- Density = 2.647 g/cm³ Covetic 6061 2.683 g/cm³ Normal 6061
- Assuming $\rho_{\rm C}$ = 2.25 g/cm³ and ρ_{6061} = 2.683 g/cm³, carbon content = 7 wt%
- But we want to re-measure with ultrapyncometer
 - Should only be 3% C
 - Some error is suspected due to surface condition

Electrical Conductivity Naval Academy

Covetic 47.81% IACS

6061 47.37% IACS

Covetic: 1% Greater electrical conductivity at room temperature

Tensile Curves: No difference in T6 condition

As-Extruded Hardness (CDR Brown)

- Asymmetric distribution for hardness across center for both specimens, not attributable to pores or inclusions.
- Average covetic hardness = HV 47.6
- •Average 6061 hardness = HV 38.7

Image of H49 mounted and polished. Hardness values for both H49 and 6061 specimens measured from center.

Open Circuit Potential (Seawater): No difference

Anodic Polarization in Seawater

Anodic Polarization in Seawater

Factor of 5 increase in current in artificial seawater: Greater conductivity through the passive film?

Thermal conductivity

- Covetic copper: 1.6X thermal conductivity of Electrolytic Tough Pitch Cu (in cold work direction)
 - Reduced conductivity in orthogonal direction, by 75%
- Normal 90Cu-10Ni: 71 W/m-K
 Covetic 90Cu-10Ni: 290 460 W/m-K
- Thermal conductivity of aluminum also expected to be much higher (but no data)

Summary

- Nanoscale carbon is not detectable by LECO or GDMS
- Nanoscale carbon raises the melting point of both Al and Cu

Covetic 6061

- Contains several weight % nano-carbon
- Has higher warm-worked strength than normal 6061
- Has significantly finer grainer size and is more strongly textured
- Has 1% higher electrical conductivity
- Probably has much higher thermal conductivity
- May have improved ballistic performance

Note: Annealing and solution treatment wipes out strength differences between cold/warm-worked covetic vs. normal, but covetic material has a slower annealing response so should maintain strength better in moderately elevated temperature applications